Connect with us

Subscribe to AMH Daily Updates

Published

on

Get the best news, expert tips and product reviews everyday!

Continue Reading

IoT

Google Nest Hub Max Smart Home Assistant (Chalk, Refurbished, Plain Box) – EXPANSYS Japan

Published

on

This content was originally published here.

Continue Reading

Home Security

Precision agriculture using AI and IoT to usher in the next revolution in food security

Published

on

Micromanagement of every aspect of the field being used for your crops is called precision agriculture. It includes mapping of the field in terms of disparities within the field or with other fields around it, the sun light variation across the year, wind patterns, rain predictions and other seasonal effects. To do that, feed from weather stations, Remote sensing equipment, GIS and GPS may be used.

Another key feature of precision farming is having a trained software module on the specific crop being planned in that field. This software module has an understanding about the growth patterns of that crop, possible diseases that are related to that crop, prescriptions of specific fertilizer or pesticides depending upon the disease pattern, and prediction of disease depending upon the growth of leaves or size or colour of the plant.

It uses feed sensors, weight sensors, soil sensors, temperature sensors, intensity sensors and multiple types of cameras. All these sensors may be deployed on a machine. This machine can be a low flying drone or a small robot moving through the field. Based on the crop and the size of the plants, the robot height and size can be manoeuvred. This robot or drone will have multiple compartments full of different ingredients required for the plants. One box may contain water, another may have pesticides, another may have fertilizer and so on. Based on the real feedback of different sensors, the software module will process that information according to the trained AI model installed on that robot or drone. Depending upon the necessary trigger, instructions will follow, and the robot will discharge specific amount of pesticides or fertilizer or water etc.

This whole mechanism may look like a complex process for small and medium level farmers, but that is not the case. Just like farmers currently hire big machines for sowing and cutting the crops, they will be able to hire different kinds of robots for their specific crops. Initially the cost will be high, but eventually, when this becomes a standard practice, the cost will come down with volume and scale.

The end user will not be required to understand or learn about these complex systems. They will just employ these systems like we use washing machines without understanding the mechanical engineering behind their working. The farmer will only need to follow some simple and clear instructions and press a few buttons.

While its execution will be simple, the advantages of precision farming are many and varied. End-to-end efficiency and decrease in wastage/loss of the yield due to disease etc will lead to an increase in crop-yield. Another advantage is the huge saving in inputs: currently, farmers waste a lot of water, pesticides, and fertilizers because these are thrown all over the field, a significant portion of which is not used by the plants. With robots in the field, only the required resources will be given near the roots of the plants, which will save a lot of resources. It will also result in a lot of data inputs across the fields, regions, and geographies, which will result in better policy decision regarding which crops to be promoted, pricing of the output, availability of markets for the produce, value enhancement products in the food chain etc.

Many people may be worried about the impact of such technologies on the job market for agriculture workers. It will result in net additional jobs in this sector. Many hands will be required for maintenance, operations, storage, production, marketing of these variety of robots and drones. The only challenge is that existing agriculture workers will be required to undergo training to work on these modern machines, which will require huge efforts on the part of the trainers as well as the farmers. So, in conclusion precision farming is going to be the next big thing in the domain of agriculture which will have significant impact on economy, food reliance and modern society.



Linkedin
{{#PIU}}{{/PIU}}
{{^PIU}}{{/PIU}}

{{A_D_N}}

{{C_D}}

{{{short}}}
{{#more}}
Read More
{{/more}}

{{/totalcount}}
{{^totalcount}}

Start a Conversation

This content was originally published here.

Continue Reading

IoT

Best Amazon Prime Day Arlo, Nest, Ring, Blink & Smart Home Deals 2020: Top Security Camera, Video Doorbell, Floodlight, Alarm & Philips Hue Sales Presented by Deal Tomato

Published

on

Prime Day smart home & security camera deals for 2020 are finally here, browse all the latest Prime Day Ring Video Doorbell, Nest Protect & Thermostat, Philips Hue smart LED bulb, Arlo Pro & Blink Mini sales listed belowPrime Day home secur…

This content was originally published here.

Continue Reading

Trending

AutomateMyHome

Subscribe to AMH Daily Updates

Get the best news, expert tips and product reviews everyday!